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The CPT Group of the Dirac Field

Miguel Socolovsky1

Using the standard representation of the Dirac equation, we show that, up to signs, there
exist only two sets of consistent solutions for the matrices of charge conjugation (C), par-
ity (P), and time reversal (T ), which give the transformation of fields ψC (x) = Cψ̄T (x),
ψ�(x�) = Pψ(x) andψτ (x) = T ψ(xτ )∗, where x� = (t , −�x) and xτ = (−t , �x). These
sets are given by C = ±γ 2γ0, P = ±iγ0, T = ±iγ 3γ 1 and C = ±iγ 2γ0, P = ±iγ0,
T = ±γ 3γ 1. Then P2 = −1, and two successive applications of the parity transfor-
mation to fermion fields necessarily amount to a 2π rotation. Each of these sets gen-
erates a non abelian group of 16 elements, respectively, G(1)

θ and G(2)
θ , which are non

isomorphic subgroups of the Dirac algebra, which, being a Clifford algebra, gives a
geometric nature to the generators, in particular to charge conjugation. It turns out that
G(1)

θ
∼= DH8 × Z2 ⊂ S6 and G(2)

θ
∼= 16E ⊂ S8, where DH8 is the dihedral group of

eight elements, the group of symmetries of the square, and 16E is a non trivial exten-
sion of DH8 by Z2, isomorphic to a semidirect product of these groups; S6 and S8 are
the symmetric groups of six and eight elements. The matrices are also given in the Weyl
representation, suitable for taking the massless limit, and in the Majorana representa-
tion, describing self-conjugate fields. Instead, the quantum operators C, P and T, acting
on the Hilbert space, generate a unique group G�, which we call the CPT group of the
Dirac field. This group, however, is compatible only with the second of the above two
matrix solutions, namely with G(2)

θ , which is then called the matrix CPT group. It turns
out that G�

∼= DC8 × Z2 ⊂ S10, where DC8 is the dicyclic group of 8 elements and
S10 is the symmetric group of 10 elements. Since DC8 ∼= Q, the quaternion group, and
Z2 ∼= S0, the 0-sphere, then G�

∼= Q × S0.

KEY WORDS: discrete symmetries; Dirac equation; quantum field theory; finite
groups.

1. INTRODUCTION

Let (a, ω) be an element of the Poincaré group P , the semidirect sum of T ,
the translations, and L, the Lorentz group, of the four-dimensional Minkowski
space–time. If u(x) is a linear field operator on the Hilbert space H, then under
(a, ω), u(x) transforms as

u′(x ′) = 
(ω)u(x) (1)
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where 
(ω) is the n × n matrix representation of (a, ω) acting on the n components
of u(x), and x ′ = (a, ω) · x = ωx + a. The state vector � ∈ H of the system of
fields, on the other hand, transforms as

� ′ = U (a, ω)� (2)

where U (a, ω) is the operator representing (a, ω) in the Hilbert space. So, the
mean value of u(x) in the state � ′ is given by

(� ′, u(x)� ′) = (U (a, ω)�, u(x)U (a, ω)�)

= (�, U †(a, ω)u(x)U (a, ω)�) = (�, u′(x)�) (3a)

with

u′(x) = U †(a, ω)u(x)U (a, ω), U †(a, ω) = U−1(a, ω) (4a)

for unitary U , and

(� ′, u(x)� ′) = (u†(x)V (a, ω)�, V (a, ω)�) = (V (a, ω)V †(a, ω)u†(x)

× V (a, ω)�, V (a, ω)�) = (�, V †(a, ω)u†(x)V (a, ω)�)

= (�, (V †(a, ω)u(x)V (a, ω))†�) = (�, u′(x)�) (3b)

with

u′(x) = (V †(a, ω)u†(x)V (a, ω))†, V †(a, ω) = V −1(a, ω) (4b)

for antiunitary U ≡ V .
The left-hand sides of both (3a) and (3b) are the analogues of the expectation

value of a time-independent operator in the Schrödinger picture of non relativis-
tic quantum mechanics, while the respective right-hand sides correspond to the
Heisenberg picture. Comparing (1) with (4a) and (4b) one obtains the compatibil-
ity conditions (Bogoliubov and Shirkov, 1980)

u′(x) = 
(ω)u((a, ω)−1 · x) = U †(a, ω)u(x)U (a, ω) (5a)

for unitary U , and

u′(x) = 
(ω)u((a, ω)−1 · x) = (V †(a, ω)u(x)V (a, ω))† (5b)

for antiunitary V . Through the matrices 
(ω), (5a) and (5b) define the action of
the operators U and V on the quantum field operators u(x).

Corresponding to the transformations of parity ((a, ω) = (0, �)) and time re-
versal ((a, ω) = (0, τ )) we have the operatorsU (0, �) = P (unitary) and V (0, τ ) =
T (antiunitary), and the matrices 
(�) = P and 
(τ ) = T . To charge conjuga-
tion (c), which corresponds to particle–antiparticle interchange, and which is not a
space–time transformation, i.e. c /∈ P , it corresponds the unitary operator U = C
and the matrix 
 = C .
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In the following we shall restrict the discussion to the Dirac field describ-
ing massive spin 1

2 particles; so u(x) = ψ(x) with n = 4. However, as shown in
Section 8, the results are independent of the value of the mass, and in particular
they hold in the massless limit. The Dirac algebra D16, isomorphic to C(4), the
algebra of 4 × 4 matrices with complex entries, is a complex Clifford algebra with
canonical basis given by

{1, γ0, γ 1, γ 2, γ 3, γ0γ
1, γ0γ

2, γ0γ
3, γ 1γ 2, γ 2γ 3, γ 3γ 1,

× γ0γ
1γ 2, γ 1γ 2γ 3, γ 2γ 3γ0, γ 3γ0γ

1, γ0γ
1γ 2γ 3};

D16 is the complexification of both H(2) = {2 × 2 quaternionic matrices} which
is the real Clifford algebra of R

4 with metric ηµν = diag(1, −1, −1, −1), and of
R(4) = {4 × 4 real matrices} which is the real Clifford algebra of R

4 with metric
η̃µν = (−1, 1, 1, 1); as real algebras, H(2) is not isomorphic to R(4) though the
corresponding metrics are physically equivalent (Socolovsky, 2001). This implies
the need of complexification to define the physical Dirac algebra.

For completeness, in the final section, we shall give the C , P , T and CPT
matrices in the Weyl representation, which is adequate for the massless limit, and
in the Majorana representation, for self-conjugate fermions. Obviously, the group
structures of Section 7 are independent of the representation used.

2. PARITY

Starting from the Dirac equation

(iγ µ∂µ − m)ψ(x) = 0

and making the transformation � : xµ = (t , �x) → xµ
� = (t , −�x) = ωµ

ν xν with
ωµ

ν = diag(1, −1, −1, −1), one looks for the 4 × 4 invertible matrix P such that
ψ�(x�) = Pψ(x) satisfies the equation

(iγ µ∂ ′
µ − m)ψ�(x�) = 0

i.e.

(i(γ0∂0 − γ i∂i ) − m)Pψ(x) = 0

with ∂µ = ∂
∂xµ . Multiplying from the left by P−1 one obtains

(i(P−1γ0 P∂0 − P−1γ i P)∂i − m)ψ(x) = 0

which implies the constraints on P:

P−1γ0 P = γ0 and P−1γ k P = −γ k

i.e.

P−1γ µ P = ωµ
ν γ ν or [P, γ0] = {P, γ k} = 0, k = 1, 2, 3. (6)
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Using the standard or Dirac–Pauli (DP) form of the γ -matrices, namely, γ0 =
( 1 0
0 −1 ) and γ k = ( 0 σk−σk 0 ), with σ1 = ( 0 1

1 0 ), σ2 = ( 0 −i
i 0 ), and σ3 = ( 1 0

0 −1 )

the Pauli matrices, one easily verifies that the unique solution to (6) is

P = zγ0, z ∈ C
∗ = C − {0}, (7)

with P ∈ D16 (see Appendix 1).
Since det(�2) = 1, then �2 must be a rotation. Since under a rotation of 360◦

spinors change sign, we have two possibilities for P2 = z2γ 2
0 = z21 (Racah, 1937;

Yang and Tiomno, 1950; Wick et al., 1952; Berestetskii et al., 1982; Sternberg,
1994):

P2 = +1 ⇒ z = ±1 (8a)

or

P2 = −1 ⇒ z = ±i. (8b)

In the first case, P2 is equivalent to a 0◦ rotation, i.e. to no rotation at all, and one
has:

P = ±γ0, P† = P = P−1 = P∼ = P∗, det(P) = 1, tr(P) = 0. (9a)

(∼ denotes the transpose matrix.) In the second case, P amounts to a 2π rotation:

P = ±iγ0, P† = −P = P−1 = −P∼ = P∗, det(P) = 1, tr(P) = 0. (9b)

For later use, we find the parity transformation for the Dirac conjugate spinor:
from ψ�(x�) = Pψ(x) one has ψ�(x�)†γ0 = ψ(x)†P†γ0 = ψ(x)†γ0 P−1 =
ψ̄(x)P−1 and the l.h.s. defines ψ̄�(x�), i.e.

ψ̄�(x�) = ψ̄(x)P−1. (10)

Formula (5a) in this case is

ψ�(t , �x) = Pψ(t , −�x) = P†ψ(t , �x)P, (11)

and therefore

P†(P†ψ(t , �x)P)P = P†2ψ(t , �x)P2 = P†(Pψ(t , −�x))P

= P(Pψ(t , �x)) = P2ψ(t , �x)

i.e.

P†2ψ(t , �x)P2 = ±ψ(t , �x), (12)

corresponding to the two solutions (8a) and (8b), which imply

ψ�2 = ±ψ.
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3. CHARGE CONJUGATION

The Dirac equation for an electric charge q = −|e| in an electromagnetic
potential Aµ is given by

(iγ µ∂µ + |e|γ µ Aµ − m)ψ(x) = 0. (13)

Taking the complex conjugate of this equation, multiplying from the left by Cγ0

where C is a matrix in GL4(C), and inserting the unit matrix, one obtains

((i∂µ − |e|Aµ)(Cγ0)γ µ∗(Cγ0)−1 + m)(Cγ0)ψ∗ = 0.

Defining the charge conjugate spinor

ψC = Cγ0ψ
∗ (14)

and imposing the constraint on C :

(Cγ0)γ µ∗(Cγ0)−1 = −γ µ, (15)

ψC obeys the equation

(iγ µ∂µ − |e|γ µ Aµ − m)ψC = 0. (16)

Then ψC describes particles with the same mass but with the opposite charge.
Notice that if one completes the charge conjugation operation, namely one also
changes Aµ → −Aµ, then (16) becomes

(iγ µ∂µ + |e|γ µ Aµ − m)ψC = 0 (13a)

which exhibits the complete symmetry of quantum electrodynamics under the
operation of charge conjugation.

Since γ0γ
µ∗γ0 = γ µ∼, constraint (15) is equivalent to

Cγ µ∼C−1 = −γ µ. (15a)

Also, the Dirac conjugate spinor is ψ̄ = ψ†γ0 and therefore ψ̄∼ = γ ∼
0 ψ†∼ =

γ0ψ
∗, so for the charge conjugate spinor, one has

ψC = Cψ̄∼. (14a)

(15a) is equivalent to

[C, γ µ] = 0, µ = 1, 3; {C, γ µ} = 0, µ = 0, 2 (15b)

which in turn implies

[C, γ5] = 0, γ5 = −iγ0γ
1γ 2γ 3 =

(
0 −1

−1 0

)
. (17)
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It can be easily shown that the unique matrix C which solves the constraints
is of the form

C = ηγ 2γ0 = η




0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0


 ∈ D16 (18)

with η ∈ C
∗; in particular C2 = η21, det(C) = η4 and tr(C) = 0 (see Appendix 1).

A second application of the charge conjugation transformation leads to

(ψC )C = ψC2 = Cψ̄∼
C = C(ψ†

Cγ0)∼ = Cγ0ψ
∗
C = Cγ0C∗γ0ψ = −CC∗ψ

= −|η|2γ 2γ0γ
2∗γ0ψ = −|η|2(γ 2)2(γ0)2ψ = |η|2ψ

and therefore

ψC2 = ψ (19)

since the effect on ψ can be, at most, a multiplication by a phase. Then η ∈ U (1)
and C is unitary: CC† = ηγ 2γ0η̄γ0γ

2† = |η|2γ 2γ 2† = −|η|2(γ 2)2 = |η|21 = 1.
On the other hand, for the transformation of the Dirac conjugate spinor one has

ψ̄C = (ψ†γ0)C = ψ
†
Cγ0 = (Cγ0ψ

∗)†γ0 = ψ∗†γ0C†γ0 = ψ∼γ0η̄(γ 2γ0)†γ0

= −η̄ψ∼γ 2γ0 = −η̄2ψ∼ηγ 2γ0 = −η̄2ψ∼C (14b)

and then

(ψ̄ψ)C = ψ̄CψC = −η̄2ψ∼CCψ̄∼ = −η̄2C2(ψ̄ψ)∼ = −η̄2C2ψ̄ψ

= −(η̄η)2ψ̄ψ = −|η|4ψ̄ψ = −ψ̄ψ (20)

which is expected since ψ̄ψ is the charge density operator. Moreover, comparing
(14b) with (14a), a symmetry consideration makes natural the assumption

ψ̄C = ±ψ∼C (14c)

i.e. η2 = ±1 which implies η = ±1, ±i . Then C becomes unimodular: det(C) =
1, and one ends with the following two possibilities:

(i) η = ±1 ⇒ C2 = 1 and C = ±γ 2γ0 = C−1 = C† = −C∼ = −C∗,

(21a)

ψ̄C = −ψ∼C ; (14d)

(ii) η = ±i ⇒ C2 = −1 and C = ±iγ 2γ0 = −C−1 = −C† = −C∼ = C∗,
(21b)

ψ̄C = ψ∼C. (14e)
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We shall see that both (i) and (ii) for C are consistent with P2 = −1 but not with
P2 = 1. This result, independently of the explicit form of C , was found for the
first time by Racah (1937); see also Schweber (1961), from whose analysis one
can also obtain that sign (C2) = sign (T 2) (see below). The consistency of (ii) for
C with P2 = −1 is explicitly shown by Capri (2002).

Formula (5a) in this case is

ψC (x) = Cψ̄∼(x) = C†ψ(x)C, (22)

and therefore

C†(C†ψ(x)C)C = C†2ψ(x)C2 = C†(Cψ̄∼(x))C = C†(Cγ0ψ
∗(x))C

= (Cγ0ψ
∗(x))C = Cγ0(Cγ0ψ

∗(x))∗ = Cγ0C∗γ0ψ(x)

= γ 2γ0γ0γ
2∗γ0γ0ψ(x) = −(γ 2)2ψ(x)

i.e.

C†2ψ(x)C2 = ψ(x), (23)

as it must be, cf. (19).

4. FIXING THE SQUARE OF P

Let (ψC )�(x�) be the parity transformed of the charge conjugate spinor; from
(14a) and (10) one has

(ψC )�(x�) = Cψ̄�(x�)∼ = C(ψ̄(x)P−1)∼ = C(P−1)∼ψ̄(x)∼

= C(P−1)∼C−1Cψ̄(x)∼

= C(P−1)∼C−1ψC (x), which must equal PψC (x); then C and P must satisfy

C(P−1)∼C−1 = P. (24)

Consider the two possibilities for C in Section 3:

(i) C(P−1)∼C−1 = γ 2γ0(P−1)∼γ 2γ0 =
{

γ 2γ0(±γ0)γ 2γ0 = ∓γ0 = −P

γ 2γ0(∓iγ0)γ 2γ0 = ±iγ0 = P
which implies P = ±iγ0;

(ii) C(P−1)∼C−1 = (−iγ 2γ0)(P−1)∼(iγ 2γ0)

=
{

γ 2γ0(±γ0)γ 2γ0 = ∓γ0 = −P

γ 2γ0(∓iγ0)γ 2γ0 = ±iγ0 = P

which also implies P = ±iγ0.

So
P and C are compatible if and only if P = ±iγ0, which implies P2 = −1.
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Then

ψ�2 = −ψ or, equivalently, P†2ψ(t , �x)P2 = −ψ(t , �x). (12a)

5. TIME REVERSAL

We start again from the free Dirac equation(
i

(
γ0

∂

∂t
+ γ k ∂

∂xk

)
− m

)
ψ(t , �x) = 0,

change t → −t and take the complex conjugate:(
i

(
γ ∗

0
∂

∂t
− γ k∗ ∂

∂xk

)
− m

)
ψ(−t , �x)∗ = 0

with γ ∗
0 = γ0, γ k∗ = γ k for k = 1, 3 and γ 2∗ = −γ 2. Let T be a 4 × 4 invertible

matrix in C(4) such that

T γ0T −1 = γ0, T γ k∗T −1 = −γ k . (25)

Then

ψτ (t , �x) = T ψ(−t , �x)∗ (26)

obeys the Dirac equation (iγ µ∂µ − m)ψτ (x) = 0. It is then easy to show that the
solution of (25) is

T = wγ 3γ 1 = w




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 , w ∈ C

∗. (27)

Clearly, T ∈ D16. Also, det(T ) = w4 and tr(T ) = 0 (see Appendix 1).
If we apply τ two times, we obtain

ψ(t , �x) → ψτ (t , �x) = T ψ(−t , �x)∗ → T (T ψ(t , �x)∗)∗ = T T ∗ψ(t , �x)

i.e. ψτ 2 = T T ∗ψ . But

T T ∗ = wγ 3γ 1w∗γ 3γ 1 = −|w |2(γ 3)2(γ 1)2 = −|w |21,

so ψτ 2 = −|w |2ψ and therefore

ψτ 2 = −ψ (28)

by a similar argument to the one used for C . So, T T ∗ = −1, i.e. T ∗ = −T −1 and
w ∈ U (1) : T = eiλγ 3γ 1 and T † = −e−iλγ 3γ 1.
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Formula (5b) in this case is

ψ†
τ (t , �x) = ψ(−t , �x)†T † = (T†ψ(t , �x)T)† = T†ψ(t , �x)†T, (29)

which is equivalent to

ψτ (t , �x) = T ψ(−t , �x) = T†ψ(t , �x)T; (29a)

therefore

T†(T†ψ(t , �x)†T)T = T†2ψ(t , �x)†T2 = T†ψ(−t , �x)†T †T = T†ψ(−t , �x)†TT †∗

= ψ(t , �x)†T †T †∗ = ψ(t , �x)†T †(T ∗)†

= ψ(t , �x)†(T ∗T )† = −ψ(t , �x)†

or, equivalently,

T†2ψ(t , �x)T2 = −ψ(t , �x), (30)

consistent with ψτ 2 = −ψ .

6. COMPATIBILITY BETWEEN C AND T . CPT

For the time reversal of the Dirac conjugate spinor one has (with x = (t , �x)
and xτ = (−t , �x)):

ψ̄τ (x) = ψτ (x)†γ0 = (T ψ(xτ )∗)†γ0 = ψ(xτ )∗†T †γ0

= ψ(xτ )∼γ0T † = ψ̄(xτ )∗T †;

then the time reversal of the charge conjugate spinor is

(ψC )τ (x) = Cψ̄τ (x)∼ = C(ψ(xτ )∼γ0T †)∼ = CT †∼γ0ψ(xτ ) = CT ∗γ0ψ(xτ );

on the other hand

(ψC )τ (x) = T ψC (xτ )∗ = T (Cψ̄(xτ )∼)∗ = T (C(ψ(xτ )†γ0)∼)∗

= T (Cγ0ψ(xτ )∗)∗ = T C∗γ0ψ(xτ ).

Then C and T must be related by

CT∗ = TC∗. (31)

Consider again the two solutions for C :

(i) C∗ = −C, then CT∗ = −TC ⇐⇒ γ 2γ0e−iλγ 3γ 1

= e−iλγ 3γ 1γ 2γ0 = −eiλγ 3γ 1γ 2γ0

which implies e2iλ = −1, i.e. λ = (2k + 1)π
2 with k ∈ Z; then eiλ = (−1)ki =

{ i, k even
−i, k odd } and so

T = ±iγ 3γ 1 = T † = −T ∗ = T −1 = −T ∼, T 2 = 1. (32)
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(ii) C∗ = C, then CT ∗ = T C ⇐⇒ γ 2γ0e−iλγ 3γ 1

= e−iλγ 3γ 1γ 2γ0 = eiλγ 3γ 1γ 2γ0

which implies e2iλ = 1, i.e. λ = kπ with k ∈ Z; then eiλ = (−1)k = { 1, k even
−1, k odd }

and so

T = ±γ 3γ 1 = −T † = T ∗ = −T −1 = −T ∼, T 2 = −1. (33)

It is easy to verify that the consistency between P and T does not introduce any
additional constraint. In fact, (26) implies ψτ (t , −�x) = T ψ(−t , −�x)∗ and the first
equality in (11) implies ψ�(t , −�x) = Pψ(t , �x); then (ψτ )�(t , −�x) = Pψτ (t , �x) =
PT ψ(−t , �x)∗ and (ψ�)τ (t , −�x) = T (ψ�(−t , −�x))∗ = T (Pψ(−t , �x))∗ = TP∗ψ
(−t , �x)∗ = −TPψ(−t , �x)∗. Since P ∼ γ0 and T ∼ γ 3γ 1, then PT = TP and
therefore

(ψτ )� = −(ψ�)τ . (34)

This equation can be verified at the level of the quantum operators in quantum
field theory: from (11),

T†(P†ψ(t , �x)P)T = (PT)†ψ(t , �x)(PT) = T†Pψ(t , −�x)T

= P∗T†ψ(t , −�x)T = −PT†ψ(t , −�x)T

and, on the other hand,

P†(T†ψ(t , �x)T)P = (TP)†ψ(t , �x)(TP) = P(T†ψ(t , −�x)T);

then

(PT)†ψ(t , �x) (PT) = −(TP)†ψ(t , �x) (TP) (35)

which agrees with (34).
In summary, there are only two sets of consistent solutions for the matrices

C , P and T in the case of spin- 1
2 Dirac fields:

(i) C = ±γ 2γ0, P = ±iγ0, T = ±iγ 3γ 1 (36)

with

C2 = 1, P2 = −1, T 2 = 1 (36a)

and

(ii) C = ±iγ 2γ0, P = ±iγ0, T = ±γ 3γ 1 (37)

with

C2 = P2 = T 2 = −1. (37a)
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We notice that the only difference between the two solutions is the i factor
interchanged between the matrices C and T , what is responsible for the opposite
sign in the square of these matrices. Correspondingly, as it will be shown in the
following section, there are two CPT-groups of 16 elements each, subgroups of
the Dirac algebra. The product matrix

θ = CPT (38)

is however the same for the two sets and is given by

θ = (±γ 2γ0)(±iγ0)(±iγ 3γ1) = (±iγ 2γ0)(±iγ0)(±γ 3γ 1) = ±γ 1γ 2γ 3

= ±iγ0γ5 = ±i

(
1 0

0 −1

) (
0 −1

−1 0

)
= ±i

(
0 −1

1 0

)
= ±

(
0 −i1

i1 0

)

(39)

which implies

θ2 = −γ0γ5γ0γ5 = γ 2
0 γ 2

5 = 1, θ† = θ = θ−1 = −θ∼ = −θ∗,

det(θ ) = 1, tr(θ ) = 0. (40)

One has

C, T , θ ∈ K and P ∈ M (41)

for case (i), and

θ ∈ K, P ∈ M and C, T ∈ N (42)

for case (ii), where K = (SU (4) ∩ H (4))0,a , M = (SU (4) ∩ H̄ (4))0,s , and N =
(SU (4) ∩ H̄ (4))0,a are respectively the sets of traceless (hermitian, antihermitian,
antihermitian) unitary unimodular (antisymmetric, symmetric, antisymmetric) 4 ×
4 complex matrices. Then, in K and M the matrices are pure imaginary, and in N
they are real.

7. GROUP STRUCTURES

7.1. Matrix Groups

For definiteness, we choose the plus signs in (36) and (37), respectively,
obtaining

P = iγ0, C = γ 2γ0, and T = iγ 3γ 1, (36b)

and

P = iγ0, C = iγ 2γ0, and T = γ 3γ 1. (37b)

By taking products, these matrices generate two non abelian groups of 16 elements
each, respectively G(1)

θ and G(2)
θ , which are subgroups of the Dirac algebra with
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the inherited algebra multiplication:

{±1, ±C, ±P, ±T , ±CP, ±CT, ±PT, ±θ}.
Clearly, the choice of signs in (36b) and (37b) (among 23 = 8 possibilities in each
case) does not alter the structure of these groups.

Their basic multiplication tables are the following:
G(1)

θ :

C P T CP CT PT θ

C 1 CP CT P T θ PT
P −CP −1 PT C −θ −T CT
T CT PT 1 θ C P CP

CP −P −C θ 1 −PT −CT T
CT T θ C PT 1 CP P
PT −θ −T P CT −CP −1 C
θ −PT −CT CP T −P −C 1

(43)

G(2)
θ :

C P T CP CT PT θ

C −1 CP CT −P −T θ −PT
P −CP −1 PT C −θ −T CT
T CT PT −1 θ −C −P −CP

CP P −C θ −1 PT −CT −T
CT −T θ −C −PT 1 −CP P
PT −θ −T −P CT CP 1 −C
θ PT −CT −CP −T −P C 1

(44)

The tables are completed by adding to the first row and to the first column of each
table, the negatives −C, −P, . . . , −θ and −1, and making the corresponding
products; then one obtains identical diagonal blocks and their negatives for the
non diagonal blocks.

G(1)
θ has 11 elements of order 2: {−1, ±C, ±T , ±CP, ±CT, ±θ} (the identity

is of order 1), and 4 elements of order 4: {±P, ±PT}; and G(2)
θ has 7 elements of

order 2: {−1, ±CT, ±PT, ±θ}, and 8 elements of order 4: {±C, ±P, ±T , ±CP}.
By Cayley theorem, G(1)

θ and G(2)
θ are isomorphic to regular subgroups of

S16, the symmetric group of 16 elements (Hamermesh, 1989), of order 16! =
2.0922789888 ×1013. (A regular subgroup of Sn is a subgroup of order n consisting
of permutations which do not leave any symbol in {1, 2, ..., n} unchanged, except
for the identity in which no symbol is changed.) Labelling the elements

1, C, P, T , CP, CT, PT, θ , −C, −P, −T , −CP, −CT, −PT, −θ and − 1
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respectively by 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16, the permutations
corresponding to 1, C, P, T , . . . , −θ , −1, expressed in terms of their cycles, are
the following:

For G(1)
θ :

1 ↔ (1) (2) . . . (16),
C ↔ (1 2) (3 5) (4 6) (7 8) (9 16) (10 12) (11 13) (14 15),
P ↔ (1 3 16 10) (2 12 9 5) (4 7 11 14) (6 15 13 8),
T ↔ (1 4) (2 6) (3 7) (5 8) (9 13) (10 14) (11 16) (12 15),

CP ↔ (1 5) (2 10) (3 9) (4 8) (6 14) (7 13) (11 15) (12 16),
CT ↔ (1 6) (2 4) (3 8) (5 7) (9 11) (10 15) (12 14) (13 16),
PT ↔ (1 7 16 14) (2 15 9 8) (3 11 10 4) (5 6 12 13),
θ ↔ (1 8) (2 14) (3 13) (4 5) (6 10) (7 9) (11 12) (15 16),

−C ↔ (1 9) (2 16) (3 12) (4 13) (5 10) (6 11) (7 15) (8 14),
−P ↔ (1 10 16 3) (2 5 9 12) (6 8 13 15) (4 14 11 7),
−T ↔ (1 11) (2 13) (3 14) (4 16) (5 15) (6 9) (7 10) (8 12),

−CP ↔ (1 12) (2 3) (4 15) (5 16) (6 7) (8 11) (9 10) (13 14),
−CT ↔ (1 13) (2 11) (3 15) (4 9) (5 14) (6 16) (7 12) (8 10),
−PT ↔ (1 14 16 7) (2 8 9 15) (3 4 10 11) (12 6 5 13),
−θ ↔ (1 15) (2 7) (3 6) (4 12) (5 11) (8 16) (9 14) (10 13),
−1 ↔ (1 16) (2 9) (3 10) (4 11) (5 12) (6 13) (7 14) (8 15).

(45)

That is, the identity decomposes into 16 cycles of length 1, 11 elements
decompose into 8 cycles of length 2, and 4 elements decompose into 4 cycles of
length 4.

For G(2)
θ :

1 ↔ (1) (2) . . . (16),
C ↔ (1 2 16 9) (3 5 10 12) (6 11 13 4) (7 8 14 15),
P ↔ (1 3 16 10) (2 12 9 5) (4 7 11 14) (6 15 13 8),
T ↔ (1 4 16 11) (2 6 9 13) (5 8 12 15) (3 7 10 14),

CP ↔ (1 5 16 12) (2 3 9 10) (4 8 11 15) (6 7 13 14),
CT ↔ (1 6) (2 11) (3 8) (4 9) (5 14) (7 12) (10 15) (13 16),
PT ↔ (1 7) (16 14) (2 15) (3 11) (4 10) (8 9) (12 13) (5 6),
θ ↔ (1 8) (2 7) (3 13) (4 12) (5 11) (6 10) (9 14) (15 16),

−C ↔ (1 9 16 2) (3 12 10 5) (4 13 11 6) (7 15 14 8),
−P ↔ (1 10 16 3) (2 5 9 12) (4 14 11 7) (6 8 13 15),
−T ↔ (1 11 16 4) (2 13 9 6) (5 15 12 8) (7 3 14 10),

−CP ↔ (1 12 16 5) (2 10 9 3) (4 15 11 8) (6 14 13 7),
−CT ↔ (1 13) (2 4) (3 15) (5 7) (6 16) (8 10) (9 11) (12 14),
−PT ↔ (1 14) (2 8) (3 4) (5 13) (6 12) (7 16) (9 15) (10 11),
−θ ↔ (1 15) (2 14) (3 6) (4 5) (7 9) (8 16) (10 13) (11 12),
−1 ↔ (1 16) (2 9) (3 10) (4 11) (5 12) (6 13) (7 14) (8 15).

(46)
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That is, the identity decomposes into 16 cycles of length 1, seven elements
decompose into 8 cycles of length 2, and eight elements decompose into 4 cycles
of length 4.

Moreover, G(1)
θ and G(2)

θ turn out to be finite subgroups of the Pin group
(Lawson and Michelsohn, 1989) of the Dirac algebra, PinD16 . In fact, for σ = 1
and 2 one has the sequence of groups and group inclusions (homomorphisms):

G(σ )
θ → PinD16 → PD16 → ClD16 → D16∗ → D16, (47)

where:
D16∗: group of units of D16, namely the set of elements of D16 with multiplica-

tive inverse; D16∗ is a Lie group with Lie algebra Lie (D16∗) = d16 (=D16 as a set)
equipped with the Lie bracket [v1, v2] = v1v2 − v2v1. The adjoint representation
and the twisted adjoint representation of D16∗, which are representations of D16∗

over d16, are respectively the group homomorphisms Ad : D16∗ → GL(d16) and
Ãd : D16∗ → GL(d16) given by Ad(v)(w) = vwv−1 and Ãd(v)(w) = α(v)wv−1,
where α : D16 → D16, the canonical involution of D16, is the map of algebras
induced by xµ → −xµ = xµ

�τ in M4 or, equivalently, by ι(M4) → ι(M4) in D16

given by xµγµ → −xµγµ, where ι : M4 → D16 is the canonical inclusion ι(xµ) =
xµγµ. For example, if xµγµ ∈ ι(M4) then for all yνγν ∈ ι(M4), −Adxµγµ

(yνγν) =
yνγν − 2ηρσ xρ yσ

x2 xνγν is the reflection of ι(yµ) across the hyperplane perpendicular
to ι(xµ), and Ãdxµγµ

(yνγν) = −Adxµγµ
(yνγν).

ClD16 : Clifford group of D16: {v ∈ D16∗| Ãd(v)(ι(M4)c) ⊂ ι(M4)c} where
ι(M4)c = {zµγµ, zµ ∈ C} is the complexification of ι(M4); clearly, ι(M4)c

∼= C
4.

PD16 = {v1 · · · v p|vk ∈ (ι(M4)c)∗ = ι(M4)c ∩ D16∗, k = 1, · · · , p, p ∈ Z
+};

(v1 · · · v p)−1 = v−1
p · · · v−1

1 , v−1
k = (zµγµ)−1 = zµ

zν zν
γµ, zνzν �= 0; and (ι(M4))∗ =

q̂−1(R∗) where q̂ : ι(M4) → R is given by q̂(ι|(xµ)) = q̂ ◦ ι|(xµ) = q(xµ) =
ηµνxµxν (or η̃µνxµxν) with ι| : M4 → ι(M4), ι|(xµ) = ι(xµ). Clearly, PD16 ⊂
ClD16 since Ãdv1···v p (xµγµ) = α(v1 · · · v p)xµγµv−1

p · · · v−1
1 = α(v1) · · · (α(v p)

xµγµv−1
p ) · · · v−1

1 = yµγµ.
PinD16 = {v1 · · · v p|vk ∈ (q̂−1({1, −1}))c}.
It is clear that

G(σ )
θ ⊂ PinD16 , σ = 1, 2; (48)

however, since G(σ )
θ contains even and odd elements of D16, then G(σ )

θ �⊂ SpinD16 =
PinD16 ∩ D16

+ . (D16
+ (D16

− ) is the even (odd) part of the Dirac algebra in the direct sum
decomposition D16 = D16

+ ⊕ D16
− .) In particular, then, the groups G(σ )

θ are not con-
tained in the connected component of SpinD16 , Spin0

D16
∼= SL(2, C) ⊕ SL(2, C),

the universal covering group of the connected component Lc+ of the complex
Lorentz group Lc.

We now present a more detailed investigation of the group structures of G(1)
θ

and G(2)
θ , and the geometrical elements which are involved. As a consequence of
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Cayley theorem, for each positive integer n the number of groups with n elements
is finite. In particular, there exist 14 groups of 16 elements, see e.g. (Asche, 1989):
five of them are abelian and the remaining nine are non abelian; from these, only
three have 3 generators: DH8 × Z2, DC8 × Z2, and 16E ; here, DH8 is the dihedral
group of eight elements, DC8 is the dicyclic group of eight elements, and 16E is
an extension of DH8 by an element of order 4 (see below). As a subgroup of S8,
the generators of DC8 can be chosen as x = (1234)(5678) and y = (1537)(2846),
then DC8 = 〈{x , y}〉 = {1, x , x2, x3, y, xy, x2 y, x3 y} with x2 of order 2, and x ,
x3, y, xy, x2 y and x3 y of order 4. Then the direct product DC8 × Z2 ⊂ S10 has
three elements of order 2: (x2, 1), (x2, z) and (1, z) with z = (9 10), and twelve
elements of order 4: (x , 1), (x , z), (x3, 1), (x3, z), (y, 1), (y, z), (xy, 1), (xy, z),
(x2 y, 1), (x2 y, z), (x3 y, 1) and (x3 y, z). So, neither G(1)

θ nor G(2)
θ is isomorphic

to DC8 × Z2. The remaining candidates are DH8 × Z2 and 16E , and we find the
isomorphisms

G(1)
θ

∼= DH8 × Z2 and G(2)
θ

∼= 16E . (49)

DH8, the symmetry group of the square, consists of four rotations: 1 = 0◦,
r = 90◦, r2 = 180◦ and r3 = 270◦, and four reflections: two in the diagonals and
two in the axis joining the midpoints of opposite edges. Identifying r = (1234)
and the reflection b = (24) we obtain

DH8 = 〈{r, b}〉 = {1, r, r2, r3, b, rb, r2b, r3b}
= {1, (1234), (13) (24), (1432), (24), (12) (34), (13), (14) (23)} ⊂ S4. (50)

Then

DH8 × Z2 ⊂ S6, (51)

the product (trivial) extension of DH8 by Z2 = {1, (56)}, DH8 × Z2 = 〈{(1234),
(24), (56)}〉, has elements

DH8 × Z2 = {1, (1234), (13) (24), (1432), (24), (12) (34), (13), (14) (23), (56),

×(1234) (56), (13) (24) (56), (1432) (56), (24) (56), (12) (34) (56),

×(13) (56), (14) (23) (56)}, (52)

of which 11 are of order 2: (24), (13), (56), (13) (24), (13) (24) (56), (24) (56),
(12) (34), (12) (34) (56), (13) (56), (14) (23) and (14) (23) (56), and 4 are of order
4: (1234), (1234) (56), (1432) and (1432) (56). The isomorphism between G(1)

θ and
DH8 × Z2,

� (1) : G(1)
θ → DH8 × Z2,
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as can be verified after a straightforward calculation, is given by:

1 �−→ 1
C �−→ (24)
P �−→ (1234)
T �−→ (56)

CP �−→ (14) (23)
CT �−→ (24) (56)
PT �−→ (1234) (56)
θ �−→ (14) (23) (56)

−1 �−→ (13) (24)
−C �−→ (13)
−P �−→ (1432)
−T �−→ (13) (24) (56)

−CP �−→ (12) (34)
−CT �−→ (13) (56)
−PT �−→ (1432) (56)
−θ �−→ (12) (34) (56).

(53)

Also, one has the short exact sequence of groups and group homomorphisms
(Mac Lane and Birkoff, 1979)

0 → DH8
ι1−→ DH8 × Z2

ϕ1−→ Z2 → 0, (54)

with ι1(g) = (g, 1) and ϕ1(g, h) = h; the sequence splits through the group homo-
morphism γ1 : Z2 → DH8 × Z2, γ1(h) = (1, h), i.e. ϕ1 ◦ γ1 = IdZ2 .

The group 16E ⊂ S8 is generated by a = (1234) (5678), d = (1638) (2547)
and n = (17) (28) (35) (46). Then, it can be easily verified that a2 = d2 = −1, n,
a2n, dn, nd, and and adn have order 2, and the eight elements a, a3, d, d3, an,
ad , da and a3n have order 4. Then

ψ (2) : G(2)
θ → 16E

given by:

1 �−→ 1
C �−→ a
P �−→ d
T �−→ an = na = (1836) (2547)

CP �−→ ad = (1735) (2648)
CT �−→ a2n = −n = (15) (26) (37) (48)
PT �−→ and = −adn = (24) (57)
θ �−→ dn = (12) (34) (58) (67)

−1 �−→ −1 = (13) (24) (57) (68)
−C �−→ a3 = −an = (1432) (5876)

(55)
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−P �−→ d3 = −d = (1836) (2745)
−T �−→ a3n = −an = (1638) (2745)

−CP �−→ da = −ad = (1537) (2846)
−CT �−→ n
−PT �−→ adn = (13) (68)
−θ �−→ nd = −dn = (14) (23) (56) (78)

is an isomorphism between G(2)
θ and 16E .

On the other hand, one can verify that the subgroup of 16E generated by d
and n, namely

{1, −1, d , −d , n, −n, dn, −dn},

is isomorphic to DH8, which, having index 2 in 16E , is an invariant subgroup,
i.e. gDH8g−1 = DH8 for all g ∈ 16E . (This can be easily verified by an explicit
calculation.) The isomorphism 〈{d , n}〉 → DH8 is given by d → (1234) and n →
(24). Then one has the short exact sequence

0 → DH8
ι2−→ 16E

ϕ2−→ Z2 → 0 (56)

(since 16E
DH8

∼= Z2) with ι2 the inclusion, Ker(ϕ2) = DH8, and ϕ2(a) = ϕ2(an) =
ϕ2(ad) = ϕ2(and) = ϕ2(a3) = ϕ2(a3n) = ϕ2(da) = ϕ2(adn) = −1. In other
words, 16E—and therefore G(2)

θ —is also an extension though not the trivial one
of DH8 by Z2. The extension splits, that is, there is a group homomorphism
γ2 : Z2 → 16E given by γ2(1) = 1 and γ2(−1) = adn (or γ2(−1) = and) with
ϕ2 ◦ γ2 = I dZ2 . Let us choose γ2(−1) = adn; then there is the isomorphism

ψ2 : DH8 ×�2 γ2(Z2) → 16E , ψ2(g, γ2(h)) = gγ2(h), (57)

where the composition in the semidirect product DH8 ×�2 γ2(Z2) is

(g′, γ2(h′)) (g, γ2(h)) = (g′�2(h′) (g), γ2(h′)γ2(h)) (58)

with �2 : Z2 → Aut(DH8) given by �2(h′) (g) = γ2(h′)gγ2(h′)−1. Explicitly, the
isomorphism ψ2 is given by:

(1, 1) �−→ 1
(1, adn) �−→ adn

(n, 1) �−→ n
(n, adn) �−→ da
(−1, 1) �−→ −1

(−1, adn) �−→ −adn

(59)
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(−n, 1) �−→ −n
(−n, adn) �−→ −da

(d , 1) �−→ d
(d , adn) �−→ an

(dn, 1) �−→ dn
(dn, adn) �−→ −a

(−d , 1) �−→ −d
(−d , adn) �−→ −an

(−dn, 1) �−→ −dn
(−dn, adn) �−→ a,

and therefore for the composition

� (2) ≡ ψ−1
2 ◦ ψ (2) : G(2)

θ → DH8 ×�2 γ2(Z2)

one has

1 �−→ (1, 1)
C �−→ (−dn, adn)
P �−→ (d , 1)
T �−→ (d , adn)

CP �−→ (−n, adn)
CT �−→ (−n, 1)
PT �−→ (−1, adn)
θ �−→ (dn, 1)

−1 �−→ (−1, 1)
−C �−→ (dn, adn)
−P �−→ (−d , 1)
−T �−→ (−d , adn)

−CP �−→ (n, adn)
−CT �−→ (n, 1)
−PT �−→ (1, adn)
−θ �−→ (−dn, 1).

(60)

Notice that since DH8 is not abelian, both G(1)
θ and G(2)

θ are non central and
non abelian extensions of DH8 by Z2.

DH8 and Z2 have a natural geometric content since, as we said before, DH8

consists of the eight symmetries of the square, and Z2
∼= S0, the 0-sphere. We can

however go into a more elementary description of the CPT groups by noticing that
Z4 = {1, d, −1, −d} is an invariant subgroup of DH8, with the quotient DH8

Z4
∼= Z2.

Then one has the short exact sequence

0 → Z4
ι−→ DH8

ϕ−→ Z2 → 0 (61)

where ι is the inclusion, Ker(ϕ) = Z4, andϕ(n) = ϕ(dn) = ϕ(−n) = ϕ(−dn) = −1.
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Then DH8 is an abelian non trivial extension of Z4 by Z2; the extension is non
central since the center of DH8 is {1, −1} and Z4 �⊂ {1, −1}. The extension splits
through γ : Z2 → DH8 given by γ (1) = 1 and γ (−1) = n or γ (−1) = dn, with
ϕ ◦ γ = I dZ2 . Let us choose γ (−1) = n; then one has the group isomorphism

ψ : Z4 ×� γ (Z2) → DH8, ψ(g, γ (h)) = gγ (h), (62)

where the composition in the semidirect product is (g′, γ (h′)) (g, γ (h)) = (g′�(h′)
(g), γ (h′)γ (h)) with �(h′) ∈ Aut(Z4) given by �(h′) (g) = γ (h′)gγ (h′)−1. For the
isomorphism ψ one has:

(1, 1) �−→ 1
(1, n) �−→ n

(−1, 1) �−→ −1
(−1, n) �−→ −n

(d , 1) �−→ d
(d , n) �−→ dn

(−d , 1) �−→ −d
(−d , n) �−→ −dn.

(63)

In summary, the group structures of G(1)
θ and G(2)

θ suggest a geometrical na-
ture of the three discrete operations, C , P and T , and of their product θ , besides
the one associated with the fact that � and τ are elements of the Lorentz group L.
In particular, this is relevant for the charge conjugation operation c, which, as we
mentioned in the introduction, does not sit in the Poincaré group. The crucial point
is that, on the one hand, G(1)

θ and G(2)
θ are subgroups of a Clifford algebra (D16),

which besides being a geometrical algebra, because it is determined by a metric in a
vector space (Porteous, 1981), it is the universal object of a certain functor (Aguilar
and Socolovsky, 1997); on the other hand, the short exact sequences (54), (56) and
(61) show that, in the last instance, G(1)

θ and G(2)
θ are determined by the groups of the

fourth (Z4) and the square (Z2) roots of unity. In the next subsection, however, we
shall show that the requirement of consistency between the one particle Dirac the-
ory and the quantum field theory, selects the second solution, that is the group G(2)

θ .
Another approaches to a geometrical interpretation of charge conjugation are

considered by Azcárraga and Boya (1975); Sternberg (1987); Sánchez Valenzuela
(1991); Shirokov (1958); and Varlamov (2003). A general review of the C , P , T
and θ transformations can be found in (Azcárraga, 1975).

7.2. Operator Group

Even if the groups G(1)
θ and G(2)

θ have interesting geometric properties, there
is no a priori physical or mathematical reason to prefer one group to the other in
what might be called the CPT group of the Dirac field.
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Instead, the quantum operators C, P and T, which act on the Hilbert space of
the field theory and transform the field operator ψ(t , �x) according to the equations
(22), (11) and (29), respectively, are the generators of a unique group G�, which
we call the CPT group of the Dirac field. G� has 16 elements, it is non abelian,
and it is isomorphic to the direct product DC8 × Z2, where DC8 is the dicyclic
group of eight elements, already discussed in the paragraph preceding equation
(49). As will be shown below, G� selects G(2)

θ as the matrix CPT group of the
Dirac field. It is interesting to notice, however, that G(1)

θ , G(2)
θ , and G� exhaust the

non abelian groups of 16 elements having three generators (Asche, 1989).
Let ψ = ψ(t , �x) be the Dirac field operator, and A and B any of the operators

C, P and T. One defines

A · ψ = A†ψA (64)

and

(A ∗ B) · ψ = (AB)†ψ(AB). (65)

In the r.h.s. of (65), AB is the usual (associative) composition of operators.
It is then easy to prove that A ∗ B is also an associative product: in fact, (A ∗ B) ·
ψ = B†(A†ψA)B = B · (A · ψ) and so ((A ∗ B) ∗ C) · ψ = C · ((A ∗ B) · ψ) =
C · (B · (A · ψ)) and (A ∗ (B ∗ C)) · ψ = (B ∗ C) · (A · ψ) = C · (B · (A · ψ));
since this holds for all values of ψ , then

(A ∗ B) ∗ C = A ∗ (B ∗ C). (66)

In equations (12a), (23), (30) and (35) we proved, respectively, that

P ∗ P = −1, C ∗ C = 1, T ∗ T = −1 and T ∗ P = −P ∗ T. (67)

Through a similar calculation one obtains (see Appendix 2)

C ∗ P = P ∗ C and C ∗ T = T ∗ C. (68)

The second equality together with (31) imply (see Appendix 2)

T ∗ = T , (69)

which selects the matrix group G(2)
θ , that is, the solution (37), (37a) or, for signs

definiteness, (37b).
For the quantum operators, one has the multiplication table:

C P T
C 1 C ∗ P C ∗ T
P C ∗ P −1 P ∗ T
T C ∗ T −P ∗ T −1

, (70)
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from which, using associativity, one obtains the basic multiplication table of the
group G�, where � = C ∗ P ∗ T:

C P T C ∗ P C ∗ T P ∗ T �

C 1 C ∗ P C ∗ T P T � P ∗ T
P C ∗ P −1 P ∗ T −C � −T −C ∗ T
T C ∗ T −P ∗ T −1 −� −C P C ∗ P

C ∗ P P −C � −1 P ∗ T −C ∗ T −T
C ∗ T T −� −C −P ∗ T −1 C ∗ P P
P ∗ T � T −P C ∗ T −C ∗ P −1 −C

� P ∗ T C ∗ T −C ∗ P T −P −C −1
(71)

The table is completed by adding to the first row and to the first column, the
negatives −C, −P, . . . , −�, and −1, and making the corresponding products;
then one obtains identical diagonal blocks and their negatives for the non di-
agonal blocks. For the P and T transformations, this group structure coincides
with that of the group G5 of Shirokov (1960) for the case of half-integer spins;
and with Feynman (1987) and Sakurai (1985) for the case of the square of the
T operator.

So, G� is a non abelian group of 16 elements, three generators, twelve el-
ements of order 4: {±P, ±T, ±C ∗ P, ±C ∗ T, ±P ∗ T, ±�}, three elements of
order 2: {±C, −1}, and one element of order 1: {1}. Then,

G�
∼= DC8 × Z2. (72)

As is well known (Armstrong, 1988), DC8 is isomorphic to the quaternion group
Q, generated by the imaginary units ι and γ , with the isomorphism given by x �→ ι

and y �→ γ . The multiplication table for the three imaginary units, ι, γ and κ is
the following:

ι γ κ

ι −1 κ −γ

γ −κ −1 ι

κ γ −ι −1

Then, as can be verified after a long but straightforward calculation, one has the
following sequence of isomorphisms:

G�
�−→ DC8 × Z2 −→ Q × S0 −→ H −→ K :
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1 �→ (1, 1) �→ (1, 1) �→ 1 �→ 1
C �→ (1, z) �→ (1, −1) �→ (910) �→ (1 2) (3 5) (4 6) (7 8) (9 16) (10 12) (11 13) (14 15)
P �→ (x , 1) �→ (ι, 1) �→ (1 2 3 4) (5 6 7 8) �→ (1 3 16 10) (2 5 9 12) (4 7 11 14) (6 8 13 15)
T �→ (y, 1) �→ (γ , 1) �→ (1 5 3 7) (2 8 4 6) �→ (1 4 16 11) (2 6 9 13) (3 14 10 7) (5 15 12 8)
C ∗ P �→ (x , z) �→ (ι, −1) �→ (1 2 3 4) (5 6 7 8) (9 10) �→ (1 5 16 12) (2 3 9 10) (4 8 11 15) (6 7 13 14)
C ∗ T �→ (y, z) �→ (γ , −1) �→ (1537) (2846) (9 10) �→ (1 6 16 13) (2 4 9 11) (3 15 10 8) (5 14 12 7)
P ∗ T �→ (xy, 1) �→ (κ, 1) �→ (1638) (2547) �→ (1 7 16 14) (2 8 9 15) (3 4 10 11) (5 6 12 13)
� �→ (xy, z) �→ (κ, −1) �→ (1638) (2547) (9 10) �→ (1 8 16 15) (2 7 9 14) (3 6 10 13) (4 12 11 5)
−C �→ (x2, z) �→ (−1, −1) �→ (13) (24) (57) (68) (9 10) �→ (1 9) (2 16) (3 12) (4 13) (5 10) (6 11) (7 15) (8 14)
−P �→ (x3, 1) �→ (−ι, 1) �→ (1432) (5876) �→ (1 10 16 3) (2 12 9 5) (4 14 11 7) (6 15 13 8)
−T �→ (x2 y, 1) �→ (−γ , 1) �→ (1735) (2648) �→ (1 11 16 4) (2 13 9 6) (5 8 12 15) (10 14 3 7)
−C ∗ P �→ (x3, z) �→ (−ι, −1) �→ (1432) (5876) (9 10) �→ (1 12 16 5) (2 10 9 3) (4 15 11 8) (6 14 13 7)
−C ∗ T �→ (x2 y, z) �→ (−γ , −1) �→ (1735) (2648) (9 10) �→ (1 13 16 6) (2 11 9 4) (5 7 12 14) (8 10 15 3)
−P ∗ T �→ (x3 y, 1) �→ (−κ, 1) �→ (1836) (2745) �→ (1 14 16 7) (2 15 9 8) (3 11 10 4) (5 13 12 6)
−� �→ (x3 y, z) �→ (−κ, −1) �→ (1836) (2745) (9 10) �→ (1 15 16 8) (2 14 9 7) (3 13 10 6) (4 5 11 12)
−1 �→ (x2, 1) �→ (−1, 1) �→ (13) (24) (57) (68) �→ (1 16) (2 9) (3 10) (4 11) (5 12) (6 13) (7 14) (8 15)

(73)
where Z2 → S0 is given by 1 �→ 1 and z �→ −1, H ⊂ S10, and K ⊂ S16.

As far as DC8 (or Q)—and therefore for G�—we can go into a more detailed
description by taking into account that DC8 is a hamiltonian group, that is, all its
subgroups are invariant (Herstein, 1996). In particular {1, x , x2, x3} ∼= Z4 and
{1, x2} ∼= Z2, its center, are proper subgroups. Correspondingly, one has the short
exact sequences

0 → Z4
ι8−→ DC8

ϕ8−→ Z2 → 0 (74)

and

0 → Z2
ι′8−→ DC8

ϕ′
8−→ DC8

Z2

∼= Z2 × Z2 → 0 (75)

where ι8 and ι′8 are the inclusions, Ker(ϕ8) = Z4, ϕ8(y) = ϕ8(xy) = ϕ8(x2 y) =
ϕ8(x3 y) = −1, Ker(ϕ′

8) = {1, x2}, and ϕ′
8(α) = [α] = α{1, x2} with [1] = {1, x2},

[x] = {x , x3}, [y] = {y, x2 y}, and [xy] = {xy, x3 y}. The isomorphism DC8
Z2

ρ−→
Z2 × Z2 ≡ V , the four or Klein’s group, is given by ρ([1]) = (1, 1), ρ([x]) =
(1, −1), ρ([y]) = (−1, 1) and ρ([xy]) = (−1, −1). Then, DC8 (or Q) is an abelian
non trivial non central (central) extension of Z4 (Z2) by Z2 (Z2 × Z2). None of
these extensions however, splits, since, as can be easily verified, it is not possible
to define functions γ8 : Z2 → DC8 and γ ′

8 : Z2 × Z2 → DC8, simultaneously be-
ing group homomorphisms and satisfying ϕ8 ◦ γ8 = I dZ2 and ϕ′

8 ◦ γ ′
8 = I dZ2×Z2 .

Then, DC8 (and so Q) is not a semidirect product, neither of Z4 and Z2 nor of Z2

and Z2 × Z2 (see e.g. Mac Lane and Birkoff, pp. 414-6). Nevertheless, the geo-
metric content of Q—and therefore of G�—is clear from the geometric content
of Z4, Z2 and Z2 × Z2.
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8. WEYL AND MAJORANA REPRESENTATIONS

In the Weyl representation of the Dirac algebra, any matrix A ∈ D16 of the
standard representation is transformed into

AW = SW AS†
W, (76)

where

SW = 1√
2

(γ0 − γ5)D P = 1√
2

(
1 1
1 −1

)
= S†

W = S−1
W ,

det(SW) = −1, tr(SW) = 0. (77)

In the massless limit, where the left (ψL) and right (ψR) parts of the Dirac
spinors defined by ψW = SWψ = ( ψR

ψL
) decouple from each other and obey ( ∂

∂t ∓
�σ · ∇)ψL,R = 0. The discrete transformations are given by

C (1)
W = ±

(
σ2 0

0 −σ2

)
, P (1)

W = ±i

(
0 1

1 0

)
,

T (1)
W = ±

(
σ2 0

0 σ2

)
, θ

(1)
W = ±i

(
0 1

−1 0

)
(78)

in G(1)
θ , and

C (2)
W = iC (1)

W , P (2)
W = P (1)

W , T (2)
W = iT (1)

W , θ
(2)
W = −θ

(1)
W (79)

in G(2)
θ .
It is clear that the group structures of Section 7.1 are preserved, and that the

derivations in Sections 2 to 6 are independent of the mass. For example, TWCW =
SWT S−1

W SWC S−1
W = SWT C S−1

W = SWCTS−1
W = (CT)W.

In the Majorana representation, any matrix A ∈ D16 in the standard repre-
sentation is transformed into

AM = SM AS†
M (76a)

where

SM = 1√
2

(γ 2γ0 + γ0)D P = 1√
2

(
1 −σ2

−σ2 −1

)

= S†
M = S−1

M , det(SM) = 1, tr(SM) = 0. (77a)



1964 Socolovsky

This transformation is such that all gamma matrices become pure imaginary:

γ0M =




0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0


 , γ 1

M =




−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i


 ,

γ 2
M =




0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0


 , γ 3

M =




0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0


 . (80)

For the discrete transformations one obtains:

C (1)
M = ±

(
1 0
0 −1

)
, P (1)

M = ±i

(
0 −σ2

−σ2 0

)
,

T (1)
M = ±

(
σ2 0
0 σ2

)
, θ

(1)
M = ±i

(
0 −1
1 0

)
(78a)

in G(1)
θ , and

C (2)
M = iC (1)

M , P (2)
M = P (1)

M , T (2)
M = iT (1)

M , θ
(2)
M = −θ

(1)
M (79a)

in G(2)
θ .
As in the previous case, the group structures of Section 7.1 are preserved. For

example, (CP)M PM = SMCPS−1
M SM P S−1

M = SMCP2S−1
M = −SMC S−1

M = −CM.

APPENDIX 1

Derivation of (7):

Writing P = ( A B
C D ) with A, B, C, D ∈ C(2), Pγ0 = γ0 P implies B = C =

0, i.e. P = ( A 0
0 D ). Then Pγ 1 = −γ 1 P implies D = −σ1 Aσ1 and so P =

( A 0
0 −σ1 Aσ1

). Writing A = ( a b
c d ) with a, b, c, d ∈ C, Pγ 2 = −γ 2 P implies b =

c = 0 and so A = ( a 0
0 d ) and D = ( −d 0

0 −a ). Finally, Pγ 3 = −γ 3 P implies d = a

and so P = aγ0 with a ∈ C
∗.
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Derivation of (18):

Writing C = ( A B
E F ) with A, B, E , F ∈ C(2), Cγ0 = −γ0C implies A =

F = 0 and therefore C = ( 0 B
E 0 ). Then Cγ 2 = −γ 2C implies E = σ2 Bσ2 and

so C = ( 0 B
σ2 Bσ2 0 ). Then Cγ 1 = γ 1C implies σ1 Bσ1 = −σ2 Bσ2 (*) and Cγ 3 =

γ 3C implies σ2 Bσ2 = −σ3 Bσ3 (**). Writing B = ( α β
γ δ

) with α, β, γ , δ ∈ C,

(*) and (**) imply α = δ = 0 and γ = −β. Then B = β( 0 1
−1 0 ) = iβσ2 and so

C = iβ( 0 σ2
σ2 0 ) = ηγ 2γ0 with η = −iβ ∈ C

∗.

Derivation of (27):

Writing T = ( A B
C D ) with A, B, C, D ∈ C(2), T γ0 = γ0T implies B = C =

0 and so T = ( A 0
0 D ). Then T γ 1 = −γ 1T (since γ 1∗ = γ 1) implies D = −σ1 Aσ1

and so T = ( A 0
0 −σ1 Aσ1

), and T γ 3 = −γ 3T (sinceγ 3∗ = γ 3) implies A = σ2 Aσ2

(*). Writing A = ( a b
c d ), (*) implies c = −b and d = a, i.e. A = ( a b

−b a ). Finally,

since γ 2∗ = −γ 2, T γ 2 = γ 2T leads to A = −σ3 Aσ3 which implies a = 0, i.e.

A = b( 0 1
−1 0 ) = ibσ2 and so T = z( σ2 0

0 σ2
) = wγ 3γ 1 with w = i z ∈ C

∗.

APPENDIX 2

Derivation of (68) and (69):

Let ψi (t , �x) denote the i-th component of the Dirac wave function ψ(t , �x),
i = 1, 2, 3, 4; then:

(i) ψiC�(t , �x) = (ψiC )�(t , �x) = Pi jψ jC (t , −�x) = Pi j (Cγ0) jkψk(t , �x)∗ =
(PCγ0)ikψk(t , �x)∗, ψi�C (t , �x) = (ψi�)C (t , �x) = (Cγ0)i jψ j�(t , �x)∗ =
(Cγ0)i j P∗

jkψk(t , −�x)∗ = −(Cγ0)i j Pjkψk(t , −�x)∗ = −(Cγ0 P)ikψk(t ,
−�x)∗ = −(CPγ0)ikψk(t , −�x)∗ = (PCγ0)ikψk(t , −�x)∗; i.e. ψiC�(t , �x) =
ψi�C (t , �x).

On the other hand, for the corresponding field operators, one has:

ψiC�(t , �x) = P†ψiC (t , �x)P = P†C†ψi (t , �x)CP

= (CP)†ψi (t , �x)(CP) = (C ∗ P) · ψi (t , �x),

ψi�C (t , �x) = C†ψi�(t , �x)C = C†P†ψi (t , �x)PC = (PC)†ψi (t , �x)(PC)

= (P ∗ C) · ψi (t , �x).
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Then, consistency between the one particle theory and the quantum field
theory, implies (C ∗ P) · ψi (t , �x) = (P ∗ C) · ψi (t , �x) and from the arbi-
trariness of ψi (t , �x), C ∗ P = P ∗ C.

(ii) ψiCτ (t , �x) = (ψiC )τ (t , �x) = Ti jψ jC (−t , �x)∗ = Ti j (Cγ0)∗jkψk(−t , �x) =
Ti j (C∗γ0) jkψk(−t , �x) = (T C∗γ0)ikψk(−t , �x) = ∓(T Cγ0)ikψk(−t , �x),
where the − and + signs respectively refer to the solutions (21a) and (21b)
for C ; ψiτC (t , �x) = (ψiτ )C (t , �x) = (Cγ0)i jψ jτ (t , �x)∗ = (Cγ0)i j T ∗

jk
ψk(−t , �x) = (Cγ0T ∗)ikψk(−t , �x) = ∓(Cγ0T )ikψk(−t , �x) = ∓(CTγ0)ik

ψk(−t , �x) = ∓(T Cγ0)ikψk(−t , �x), where the − and + signs, respec-
tively, refer to the solutions (32) and (33) for T ; then ψiCτ (t , �x) =
ψiτC (t , �x).

On the other hand, for the quantum field operators, one has:
ψCτ (t , �x) = T†ψC (t , �x)T = T†(C†ψ(t , �x)C)T = (CT)†ψ(t , �x) (CT) =
(C ∗ T ) · ψ(t , �x) = T†Cψ̄(t , �x)∼T = C∗T†ψ̄(−t , �x) ∼ T = C∗T ψ̄

(−t , �x) ∼; ψτC (t , �x) = C†ψτ (t , �x)C = C†(T†ψ(t , �x)T)C = (TC)†ψ
(t , �x) (TC) = (T ∗ C) · ψ(t , �x) = C†T ψ(−t , �x)C = T C†ψ(−t , �x)C =
T Cψ̄(−t , �x) ∼.

Consistency with the one particle theory implies C†(T†ψ(t , �x)T)C = T†(C†ψ
(t , �x)C)T i.e.T ∗ C = C ∗ T and then T C = C∗T , that is, CT ∗ = T ∗C∗. From
(31), T ∗C∗ = T C∗ and therefore T ∗ = T .
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